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Program Overview 

Multi-parameter in-situ cell monitoring to 

increase operating window and improve SOH 

Observability Integration 
& Controls Development 

Ultra-thin Temp & 
Expansion Sensor 

Development 

Thermal 
Electrochemical 

Mechanical 

Estimation / Limits 
• State of Power 
• State of Charge 

• State of Health 

Multi-Physics 
Models 

Data & Model 
Fusion 

Pack Integration 
& Validation 

Characterize  
Cells 

Develop 
Sensors 

Swelling due Li-Intercalation 
(top) & Thermal  Expansion 

(bottom) 
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Program Summary & Value 
Proposition 
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Expected System Benefit 

Test Case – 5 Amp-hr Panasonic Cell for 
HEV Applications 

Real-time Dynamic Model-based Power Limits 

Temp & Expansion Sensor  

Prediction Estimation 

P
o

w
e

r 

State of Charge

Cold Temp Limits Room Temp Limits

Cycle Operating
Window - Centered at 

High SOC

Cycle Operating
Window - Centered at 

Low SOC

Widened State of Charge Operating Range

20% Reduction in pack size while 
maintaining life at higher throughput 
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Enabling Sensor Technologies 

Thin film RTD  

• Thin (<100mm) – locate 

anywhere on surface 

• Develop arrays 

• Accuracy 

• Time response 

• Enables lower cost battery 

packaging 

Eddy Current  

• Not able to measure 

expansion today 

• Small / cost effective 

• Can measure between cells 

• Potential correlation to 

battery health, SOC, … 

36 point Temperature Array 
Leverages high volume, low 

cost Flex manufacturing 

Benefits 
Competitive 
Technologies 

Thermistors 

• Thick (>1mm) 

• Limited locations 

• Slower 

• Lower accuracy 

• Higher installation costs 

Strain Gages: 

• Drift, low signal level 

• Temp effects 

Load Cells: 

• Thick (>1/4”) 

• Not cell specific 

Integrated Expansion & 
Temperature Sensor 
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Fusion of Sensor Data and Models 

Thermal      Mechanical 
 

-Thermal and 
Intercalation swelling, 
sensor response, and 
porosity change. 

Electrochemical (ECM 
or DFN) 

𝑇 

𝑇 

𝑆𝑂𝐶 

𝜀, 𝜖 

Modeled Pack Temp 

Free and Constrained Swelling 
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Model Based Power Limit 

• Improved battery core temperature estimation using 
thin film temperature sensor -> 2 minute faster 
convergence rate. 

• Model based power limiting strategy enables faster 
warmup to full power, and wider SOC operation. 

• Dynamic power limits can be more conservative when 
necessary for health and safety. 

• At low temperatures (-5oC), battery utilization (Whr 
throughput per cell) can be increased up to 26%. 
 

 

(New) US06 Drive Cycle Benefits 

Prediction Estimation 
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Key Learnings & Results 
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Charge sustaining  
pulses 
• 20, 39, 50A 
• Fan on, fan off 

Experiment 

Comsol 

Reduced 
TEM 

Electro-Thermal Model Validation 
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ECM

Experiment
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20A excitation

39A excitation

50A excitation

• Performed observability analysis 

for optimal sensor placement. 

• Thin film sensor enables faster 
core temp estimation over 
existing measurement location     
(side vs top of cell ) 

• Less than 2oC modeling error in 
pack cell temperature predictions 

over a 35oC operating range 

 

Finite element and 
reduced order pack 
models validated against 
vehicle drive cycle data. 

Reduced 

20A excitation 

39A excitation 

50A excitation 

 Samad, N., e.t. al. DSCC 2014-6321, 2014. 
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Swelling (Free) 

Swelling (Constrained) 

Response at GE Sensor location 

Thermal (∆T=10°C) 
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Estimation Quality Improved 

Mohan S., e.t. al.  DSCC 2015, in preparation 

U.S. Utility Patent Application No. 62/043,519  

The relation among temperature, SOC, current 

and force enables the use of measured for in 

SOC estimation. 
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SOC Estimation 

Mohan S., e.t. al.  DSCC 2015, in preparation 
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Estimation quality improved by a adding 

force measurement - more prominent in 

SOC range between 30~50% 

The relation among temperature, SOC, current 

and force enables the use of measured for in SOC 

estimation. 
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3-Cell Degradation Testing 
• Established baseline degradation 

– 25oC cell temperature ( -10oC ambient air) 

• Open loop US06 power profile, no controls (yet). 

 

 

 

 

 

 

 

• Conclusion: Lower capacity loss at lower SOC. 

• Next steps: compare degradation effects for closed loop power limiting and 

wider SOC window on downsized pack.  

 

Using 3-fixtures to assess capacity loss 

56k equivalent miles driven 

33% 50% 66% 

50% SOC 

high preload 
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Power Limits, Downsizing, and Degradation 

• Shift to lower SOC operation for reduced degradation 

and more charge acceptance (regen braking) at -5oC.  

 
(New) US06 Drive Cycle 
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Power Limits, Downsizing, and Degradation 

# of times algorithm would limit power 
deliver/acceptance, i.e. Energy left on 
the table <==> FE. 
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Validation Plan & 
Performance Targets 
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Status of Proof of Concept – Demonstration Pack 

Sensor-Pack Integration 

Gen 1 Open Loop UM Model 
Complete Q1 2015 

Baseline U-M 3 Cell Rig 

56k miles  
Complete Q1 2015 

Demonstration Pack Operation 

Validate Expected Benefits 
Start Q2 2015 

Confirm functionality 

• Verify sensor fit 
• Test software / find bugs 
• Confirm accuracy of 

model estimates 

Operation 

• Integration 
• Examine target SOC window 
• Sensor accuracy & perf 
• Confirm accuracy of model 

estimates 

Verify model & control 

• Hardware in the loop 
simulation 

• Impact on degradation 
on validation conditions 
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Benefit Demonstration & Validation 

Instrumented Pack 
Control Pack 

GE Sensors & UM Controls 
Wider Operating Window 

Ford Controls 

Wider Operating Window 

• Use existing test profiles, adjusting SOC ranges 
• Two cycles “high”, two cycles “low” 
• Adjust between cycles if significant drift in 

center point 
• Run for c. 30,000 mi equivalent minimum 
• Capacity & power tests every month – examine 

degradation 

 
P

o
w

e
r 

State of Charge

Cold Temp Limits Room Temp Limits

Cycle Operating
Window - Centered at 

High SOC

Cycle Operating
Window - Centered at 

Low SOC

Widened State of Charge Operating Range
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Expected Performance Benefits 
• Improved state of charge and power capability estimation 
• Improved power availability at low temperatures 
• Pack may be downsized (fewer cells or smaller cells) 

AMPED 

Full Pack (76 cells) – 2014MY Reduced Pack (60 cells) same total power 

-21% +27% 

Increased Utilization (Wh throughput per cell) 

105s * 

Faster Warmup 

+23% 

Cell Count 
Reduction +25C Cold (-5C) 

*Results for scaled US06 battery power 

profile at 25oC. 
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Summary 
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Summary 

• Proven 

– Temperature sensor + physics based model enables more accurate and faster 
(2x) prediction of core temperature 

– Developed SOC estimation based on force / expansion – more sensitive (in 30-
50% SOC range) than typical voltage based measurements 

– Demonstrated integration of sensors & open loop control with Ford pack 

– Simulated validation performance based on improved state estimation  

• Ongoing 

– Verify validation windows on 3 cell rig and developmental pack 

– Development of closed loop control with expansion/force input 

– Instrument and run validation pack to demonstrate benefit 

• Challenges Addressed 

– Cell SOC estimation  

– SOH measurements / battery lifetime 

– Model to extract maximum power capability and throughput with long life 
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Program Next Steps 

• Examining sensor performance on other cell types 

(soft pouch, larger size) 

• Commercialization of sensors & model-based 

algorithms 
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